

A Study on Expandable Latest Software Feature in Bundling of Latest Hardware with Earlier Software

Enugala Vishnu Priya Reddy¹, V. Sukanya², Abhinava Vinay Kumar M³, Anil Kumar M³

¹M.Tech, Computer Scienced and Engineering, Osmania University, Hyderabad, Telangana, India ²Assistant Professor, ¹Computer Scienced and Engineering, Osmania University, Hyderabad, Telangana, India ³MBA, MA, M.Ed ¹Computer Scienced and Engineering, Osmania University, Hyderabad, Telangana, India

ABSTRACT

The revolution of IOT (Internet of Things) effects the usage of power day by day increasing more dangerously, In latest generations of computers are running by the most successful Windows operating system by checking at run command as Msconfig we can find out a number of unnecessary applications and programs are running in service and startup. By stopping some of those applications the system performance will be increased but at times, it doesn't. The strength in development of a computer means huge changes in hardware and software and also introducing so many new inventions and are adopting old systems called as the latest technology, but here in these latest technology developing time some of the unwanted implementations are forced to apply which are not required but as per the capability of new strength latest technologies of the system will run safely and with any problematic by running large size of operating Software, in the year of 1985 the Microsoft company developed full version of operating system Microsoft windows 1.0 and this operating software from this operating system selected some of the important set of file by below values of 100MB the system will be running by 1GB capacity of hard disk and run by 256KB capacity of RAM and run by only two colors by 640*200 mode. Here this system can be run 1 or 2 or more partitions of drives by the hard disk and this system run better performance by supporting of hard disk RPS speed, and the latest technology of Microsoft company operating system windows 10 running by number of multitasking of programs by taking minimum of 4GB operating system storage space, and run with 4GB capacity of ram with hard disk capacity from above 1TB, but here by the interchange of windows10 and windows 95 components of hardware and software are not working, but it can be possible with the latest system of Dock USB type C it will be the best suitable example of this innovative technology the speed parameter will be increased and power consumption of the firmware will be reduced.

Keywords: Internet of Things, Software, Hardware, Operating systems, Dock USB Type C.

I. INTRODUCTION

At the time of the invention of the electronic machines, the programmer finds out the computer but today's computers grown up to even operating of this machines by programs automatically. In the early 19th century the software starts with an algorithm later to written decision-making theory as programs and finally in 1946 it was developed as a rewritable

program. And later development time bundling of software and hardware growth was struck by so many legal issues, the entry of 1970 UNIX and Microsoft software the digital technology growth rapidly by an individual as software and hardware.

The windows 1.0 have run by black and white of two color display monitor only with support of some

specific hardware components which is run by the support of PCB board, later the windows next versions the PCB board extended by supported of PCI slots with supports of extendable device like VGA display, audio, video, multimedia, modem etc cards and device these all are expandable and which are not essential hardware while the installation of operating system but the requirement of use orientation the applications can be extendable device run by after the installation of device drivers. So, up to this type of operating system are running by minimum volume of space using in the secondary storage and required by less speed performance but the latest running of a windows10 operating system is running by all device inbuilt with all supported PCB hardware & software without user required components. For example a high school student as per his curriculum of education he/she has not required the high definition of multimedia and 3D graphics cards of hardware and software but he/she is using without their knowledge as in their requirement. By the production of only latest hardware components, a high school's student is able to buy only this high quality as well as the high price of computers.

In recent days students are using instead of latest high technology of computers which are high capability speed and storage of computers the students are using operating systems like Android operating software by using mobiles with supports of APK apps and this less secondary storage of operating systems and software of mobile hardware are also running by good performance and useful for the students orientation by hardware name mobiles are also extended like of tab and mini-tab and mini laptops etc..

II. LITERATURE REVIEW

History of Software

Software: A set of instruction formed by as a program in memory of digital storage device by execution by

running of a processor to instruct Hardware components by binary codes.

Before stored program digital computers

Ada Lovelace (19th century): Neither for use of analytical Engine Ada Lovelace used first piece software which is an outline(Algorithm) and this is the first either software nor analytical engine for it was ever created.

Alan Turing (1935), the first theory of software essay about computable numbers with an application in finding out decision problem. It became now as a computer since.

Prior (1946) created computer by stored programs in the digital device and did not yet exit the programs from the digital device.

Early day of computers software (1948-1979)

Tom Kilburn (1948) very first time invented a stored program held a piece of computer software in an electronic memory and it was executed successfully on 21 June 1984 at 11 am in the University of Manchester it is called as a baby computer. It was performed for the large division and large subtraction in the calculation part.

Bundling of software with hardware

Original equipment manufacturers (1969), such as Data General, Digital equipment and IBM are coming by the name of minicomputers did not come preinstalled software but needed to install those sold engineers at the time of manufactures of minicomputers and these court as per violation of US antitrust regulator.

Bill Gates, co-founder Microsoft (1976) against software piracy and started the commercial software.

Data General (1985) also faced legal problems to bundling when introduced data general Nova, a

company called Digidyne to using RDOS Operating system.

In 2008, Psystar Corporation enters to the market with unauthorized Macintosh clones with OS X preinstalled software to the manufacturing time of hardware and violated the rights of Apple Inc by leaking of Apple technology and defunct Psystar Corporation by us court in the year 2012.

Unix (1970-2017) was the earlier operating system and very popular and even still today the operating system running successfully on Mac OS(previous OSX and Mac OS X)

Linx (1991) Linx operating system or a Kernel is very similar to UNIX operating system.

Software (1980) before entering into the Microsoft company software programs were sold up to 1000units at \$50000-\$60000 but after Microsoft, it was decreased to cost around the \$ 50-700 and companies like Microsoft, Micro Pro and Lotus Development had almost ten million US dollars of sale per annual. Recent software development **Apps stores:** In recent years applications for mobile devices have been termed apps, the Apple company funnel iPhone and iPad apps sales through their own Apple App stores only. Apple company mobile apps don't support java or flash virtual machines but the Android platform used mobile device have to option to get multiple app stores.

Computer software and programming language timeline:

The following tables include year by year development of many different aspects of computer software including:

- 1. High-level languages
- 2. Operating systems
- 3. Networking software and applications
- 4. Computer graphics hardware, algorithms and applications
- 5. Spreadsheets
- 6. Word processing
- 7. Computer-aided design

	1971	1972	1973	1974	1975
Programming	CDL	С	COMAL	BASIC FOUR	ABC
Languages	KRL	INTERCAL	LIS	CLU	Altair BASIC
	SUE	PL/M	ML	GRASS	CS-4
		Prolog	Speakeasy-3	PROSE	Modula
		Smalltalk			Scheme
		SQL			
Operating	DEC	Data General	Soviet ALGOL	DEC DOS-11	CP/M
systems	RSTS-11	RDOS	68		
Computer		Wozniak's	Bob Metcalfe		Telenet packet
Networks		Blue Box	develops		Switching
			Ethernet		
Computer		Newell & Sancha		Catmull &	EDS founded
Graphics		visible		Straber	
		surface algorithm		develop z-	
				buffer	
CAD/CAM	MCS	ADAM	Auto-Draft	Tektronix	Solid modeling
	founded			4014	

 Table 1. Details of Software in 1971–1975

	1403				
	1976	1977	1978	1979	1980
Programming	Mesa	Blue	C shell	AWK	Ada 80
Languages	Plus	Bourne Shell	HAL/S	Icon	C with classes
	Ratfor	Commodore	MATLAB	Modula-2	CBASIC
	S	BASIC	RPG III	REXX	
	SAM76	FP	SMALL	Vulcan dBase-	
	SAS	Icon	VisiCalc	II	
	Smalltalk-76	IDL	SQL		
		Red			
		Standard			
		MUMPS			
		Yellow			
		IDL			
Operating	Cambridge	1BSD	2BSD	Atari DOS	86-DOS
systems	CAP		Apple DOS		
Computer				Usenet	TCP/IP
networks					
Computer		Antialiasing			
Graphics					
Word	Electric Pencil		AppleWriter	Wordstar	WordPerfect
Processors					for DG Mini
Spread sheet				VisiCalc	
CAD/CAM	McDonnell	Forerunner to	Raster	IGES	VersaCAD
	Douglas	CATIA	graphics		
	buys		display		
	Unigraphics				

Table 2. Details	of Software	in1976–1980
------------------	-------------	-------------

Table 3. Details of Software in 1981–1985

	1981	1982	1983	1984	1985
Programming	BBC BASIC	Draco	ABAP	CLIPPER	Paradox
Languages	IBM BASICA	PostScript	Ada 83	Common Lisp	QuickBASIC
		Speakeasy-IV	C++	Good Old	
			GW-BASIC	MAD (GOM)	
			Korn Shell	OPL	
			Objective-C	Redcode	
			occam	RPL	
			True BASIC	Standard ML	
			Turbo Pascal	Matlab	
Operating	MS-DOS 1	Commodore	MS-DOS 2	MS-DOS 3	MS-DOS 3
Systems	Acorn MOS	DOS	Lisa Office	System	System

			SunOS 1	Software	Software
Computer			ARPANET	Novell	NSFNET
Networks			splits	Netware	connects
			off MILNET	Research In	5
				Motion	Supercomputers
				founded	
Computer		Silicon			ATI founded
Graphics		Graphics			
		Founded			
Word	Bank Street	WordStar 3.0	Word 1 for	Word 1 for	WordPerfect
Processors	AppleWriter	WordPerfect	DOS	Mac	4.2
	II	for DOS			for DOS
Spreadsheet		Lotus 1-2-3			Excel for Mac
CAD/CAM	Dassault	Autodesk	Autodesk	AutoCAD 2	Bentley
	Systems	founded	releases		Systems
			AutoCAD		Parametric
			1.2,1.3,1.4		Technology

Table 4. Details of Software in 1986–1990

	1986	1987	1988	1989	1990
Programming	CorVision	Ada ISO 8652	A+	Bash	AMOS BASIC
Languages	Eiffel	Clean	Hamilton C	LPC	AMPL
	GFA BASIC	Erlang	shell	Modula-3	EuLisp
	Informix-4GL	HyperTalk	Object REXX	PowerBASIC	Haskell
	LabVIEW	Mathematica	Octave	Turbo Pascal	J
	Miranda	Oberon	RPG/400	OOP	Object Oberon
	Object Pascal	occam 2	SPARK	VisSim	Z Shell
	PROMAL	Perl	STOS BASIC	FL	Operating
		Self	Tcl		
		Turbo Basic	Mathematica		
Operating	AIX 1	Windows 2.0	MS-DOS 4	EPCO	Windows 3.0
Systems			Windows 2.1x		
			OS/2		
			A/UX		
Computer			Morris worm	World Wide	HTML
Networks				Web	
				Starts	
Computer	Intel 82786	JPEG and GIF	Pixar's <i>Tin</i>	AutoDesk 3D	
Graphics	Coprocessor		Тоу	Studio	
			wins Oscar		
Word		Microsoft	PC Magazine	WordPerfect	Microsoft

processors		Works for	Reviews	5.1	Office for
		DOS	55 Packages	Word for	Windows
				Windows	
Spreadsheet		Excel for	Quattro Pro		
		Windows			
CAD/CAM	AutoLISP	Deneba	CATIA 3	Parametric T-	Visionary
		releases	AutoCAD 10	Flex	Design
		Canvas X			Systems
		AutoCAD 9			founded
					AutoCAD 11
					ACIS 1

Table 5. Details of Software in 1991–1995

	1991	1992	1993	1994	1995
Programming	GNU E	Turbo Pascal	Ruby	CLOS	Ada 95
Languages	Oberon-2	Dylan	Lua	ANS Forth	Borland
	Oz		AppleScript	ANSI	Delphi
	Q		Brainfuck	Common Lisp	ColdFusion
	Visual Basic		Κ	Claire	Java
	Python		Lua	Pike	JavaScript
			NewtonScript	RAPID	LiveScript
			R		РНР
			Transcript		Ruby
			Self		
			ZPL		
Operating	MS-DOS 5	Windows 3.1x	MS-DOS 6	AIX 4.0, 4.1	Windows 95
Systems	Linux	386BSD	Newton OS		Digital UNIX
			Solaris		
Computer		Mosaic web	Netware 4	Netscape	The research
Networks		browser		Navigator	proposal
					for Google was
					formed.
Computer		OpenGL	Nvidia		Pixar Goes
Graphics			founded		Public
					after Toy
					Story
Word	Microsoft			Novell buys	Word 95 for
Processors	Works			WordPerfect	Windows
CAD/CAM	EDS buys	CADAM &	AutoCAD 12	Simple Vector	MicroStation
	Unigraphics	CATIA		Format	Advanced
		begin			solid modeling
		unification			

	1996	1997	1998	1999	2000
Programming	Curl	Component	M2001	D	ActionScript
languages	Lasso	Pascal	Open Source	GameMaker	C#
	NetRexx	Е	Erlang	Language	Ferite
	OCaml	ECMAScript	Pikt	Harbour	Join Java
	Perl Data	F-Script	PureBasic	XSLT	Joy
	Language	ISLISP	Standard C++		XL
	WebDNA	Pico	UnrealScript		Visual
		REBOL			Basic .NET
		Squeak			
		Smalltalk			
		Теа			
		Rebol			
Operating	Windows NT	Inferno	Windows 98	Mac OS X	Windows 2000
Systems	4.0	Mac OS 7.6	Solaris 7 64-bit	Server 1.0	Windows ME
	Palm OS	Mac OS 8		Mac OS 9	Mac OS X
					Public Beta
Computer	Mosaic web	NetWare 4	Netscape	BlackBerry 850	
Networks	browser		Navigator		
	Inter@ctive				
	Pager				
Computer	3Dfx Voodoo	ATI Rage Pro	Voodoo	S3 Savage 4	Radeon DDR
Graphics	DDIA VOCACO	1111 Ituge I Io	Banshee	GeForce 256	(R100)
Word	Corel buys		241101100	Sun buys	(1100)
Processors	WordPerfect			StarDivision	
	from Novell				
CAD/CAM	Canvas 5	ISO 13567	Dassault	Pro/Engineer	AutoCAD 2000
		AutoCAD 14	Systems buys	2000	
			Matra		
			Datavision		
			Products		

Table 6. Defails of Software in 1996–200	Table 6.	Details o	of Software	in	1996-2000
---	----------	-----------	-------------	----	-----------

Table 7. Details of Software in 2001–2005

	2001	2002	2003	2004	2005
Programming	AspectJ	Gosu	Factor	Alma-0	F#
Languages	GDScript	Io	Falcon	Воо	Seed7
	Processing		Nemerle	FreeBASIC	
	RPG IV		Scala	Groovy	
			Squirrel	Little b	
				Subtext	
Operating	v10.0 Cheetah	Windows XP	v10.3 Panther	v10.4 Tiger	
Systems	v10.1 Puma	64-bit Edition	Red Hat	Ubuntu 5	
	Windows XP	10.2 Jaguar	Enterprise	Windows XP	
			Linux	Professional	

			Windows	x64	
			Server	Edition	
			2003		
Computer	Netware 4	Netscape	802.11g	Gmail	
Networks		Navigator	Apple Safari	Facebook	
				founded	
				Mozilla Firefox	
Computer	Nvidia Kyro II				Adobe buys
Graphics	GeForce 3				Macromedia
Word				Writely	
Processors					
CAD/CAM	EDS buys	Unigraphics	Dassault	EDS PLM	UGS buys
	SDRC	NX	integrates VBA	Solutions	Tecnomatix
		Autodesk buys		goes private	
		Revit			

Table 8. Details of Software in 2006–2010

	2006	2007	2008	2009	2010
Programming	Cobra	Clojure	Genie	CoffeeScript	Chapel
Languages	Links	Fantom	Pure	Go	RPG Open Access
	OptimJ	Fortress		Idris	Rust
	Windows	LOLCODE		Parasail	
	PowerShell	Oberon-07			
		Vala			
Operating		Windows	Android	Windows 7	Android 2.2 "Froyo"
Systems		Vista		v10.6 Snow	Android 2.3
		v10.5 Leopard		Leopard	"Gingerbread"
				Android 1.5	
				"Cupcake"	
				Android 1.6	
				"Donut"	
				Android 2.0–	
				2.1 "Eclair"	
Computer	BlackBerry		Google	Wi-Fi 802.11n	
Networks	Pearl		Chrome		
	8100		Chromium		
Computer	AMD buys		Assassin's	Up Cloth	Avatar wins
Graphics	ATI		Creed	Simulation	"Best Picture"
	Disney buys				
	Pixar				
Word	Google buys		Oracle buys	Oracle releases	

Processors	Upstartle		OpenOffice	OpenOffice	
			from	to Apache	
			Sun	Software	
				Foundatio006E	
CAD/CAM	SolidWorks	Siemens buys			
	2007	UGS			

Table 9: Details of Software in 2011–20)14
---	-----

	2011	2012	2013	2014
Programming	Dart	Elixir		Hack
Languages		Julia		Swift
		TypeScript		
Operating	v10.7 Lion	Windows 8	v10.9 Mavericks	v10.10 Yosemite
Systems	Android 3.x	v10.8 Mountain	Windows 8.1	Android 5.0
	"Honeycomb"	Lion	Android 4.3	"Lollipop"
	Android 4.0 "Ice	Android 4.1.x–4.2.x	"Jelly	
	Cream	"Jelly	Bean"	
	Sandwich"	Bean"	Android 4.4	
			"KitKat"	
Computer		802.11ac		
Networks				
Computer	Hugo wins Oscar			
Graphics	Visual Effects			

III. PURPOSE OF THE STUDY

Firmware is a software program on hardware device typically stored in the flash ROM, these set of programs of an embedded system may be the only program that will run on the system and provide all of its functions, firmware such as the ROM BIOS of personal computer may contain only elementary basic function of the device and only provide the service to the higher level of software. As more and more programs enter now in the firmware the hardware its self smaller, cheaper and faster but to comparing earlier bundling and individual hardware and software the speed reducing in some of the particular requirement unnecessary software &hardware applicable by force able so finally the results of cost will be raising as the performance of instrument speed

also will down. At the year ending of 2017 launch of Kaios operating system supports powerful features like 4G/LTE, NFC and Qwerty keyboard and it is based on open standard HTML5 and allows CSS and Javascript. In fact, KaiOS is so light that it can run on phones with an only 256MB run of internal memory of phone device. But the same qualities of facilities are providing other mobile operating systems are taking more than double space of volume with comparing of Kaios In earlier time a PDF adobe reader 2 software to take installation space volume 1.37MB only now recently the PDF adobe reader 11.0 full version software takes more than 70MB but according to the user orientation, both work same indeed the development of hardware and software varies necessarily much of value is in the installation of software.

Finally, the main purpose of this study from the above data taken by using latest hardware with considering old versions of software and operating system with reducing are unnecessary hardware and software using we can achieve good performance in less price of production of computer or mobile or tab or any other electronic instrument.

IV. METHODOLOGY

Formalization of software development

The development of curricula in computer science has improved in software development of these components of

- a. Structured and objective Oriented Programming
- b. Data structures
- c. Analysis of Algorithms
- d. Formation languages and compiler construction
- e. Computer Graphic Algorithms
- f. Sorting and searching
- g. Numerical methods optimization and Statistics
- h. Artificial Intelligence and machine learning

How software has affected hardware: Moore's law predicted that as more and more programs enter the real of firmware and the hardware itself becomes smaller, cheaper and faster, an increasing number of types of functionality of computing first carried out by software, have joined the ranks of hardware, as for the example with graphics processing units. (However, the change has sometimes gone the other way for cost or other reasons, as for example with soft modems and microcode.)Most hardware companies today have more software programmers on the payroll than hardware designers, since software tools have automated many tasks of printed circuit board (PCB) engineers.

• In India telecommunication Reliance company released bundling CDMA mobile which developed Palm Operating System and networking with full signal strength, higher performance even of least converge area also providing full clarity of communication with less price to comparing these facilities other than CDMA networks like GSM mobile networking mobile running device the only CDMA mobile device has taken very less value of firmware and effectively.

- A LED, LCD, CRT monitor device to comparing all the CRT monitor running with a fixed firmware and working regularly without the requirement of updating. But the updating processes of the establishment firmware which are taking some of the patches through online downloading and it becomes heavy data of firmware so finally the performance of device not performed well as per the technical engineering thoughts sometimes the instrument device will also not working because of lack of knowledge of updating and installation software.
- In India telecommunication JIO testing signal are launched in LYF mobile devices and continues updating through the internet downloading frequently finally better signal strength possible but here the processes of testing signal so many times of patches required for the operating system of mobile Android software, to compared that the time of released versions and updated versions mobile device faced heavy burden by the large value of android firmware software. Who are not updated latest updated software the mobilefacing heat, radiation problem and signal problem by this technical method so many people are facing a problem who have lack of technical knowledge.
- An internal decorated vehicle with special bundling software and hardware device are the best entertainment for the traveling passengers and these working device very less usage of an operating system with inbuilt of hardware.
- Apple Company released laptops by bundling operating system Mac OS and this device is not

supported with Android apps into this mobile device because the operating system uses less data with less usage of battery and provides high performance when to compare Android and Apple mobile runs the only iOS supported apps.

his interest and wastage of mobile internal storage by this problem sometimes the user doesn't have a chance to his requirement application or apps as per the firmware software.

Many of mobile are inbuilt pre-loaded application is running with user requirement of

	0	1			
Table 10. Samp	ole of different	type of mobiles	s with its Hard	ware & Software	using averag

Mobile	Operating	OS required	RAM	Mode of	Communication	Stand by battery
Device type	system	space of	originally	RAM	network Single	time
and model		volume in	Required for	required as	burden/	
		MB	the booting	per the	Radiations/	
			the device	booting	mobile heating	
				device	problem	
Apple iPhone	iOS	1.5GB	8GB	POST	1 to 1.6watts/kg	10 days
16 GB				(Power On		
internal				Self Test)		
storage						
Samsung	Android	2-4GB	1.3GB	Power On	0.655 to	12days
	version			System	1.5watts/kg	
				Startup		
Microsoft	Microsoft	1.4GB	1GB	By UEFI	1.6watts/kg	10day
	windows					
Jio LYF	KaiOS	256MB	512KB		0.362 to	15days
					0.560watts/kg	

ge of 2000amphs battery details in India

From these all the example considering taking a new type of bundling hardware and software with the latest hardware and earlier least space of usage inbuilt software, here the software an option to expand to the latest version if required the user orientation method is the best salvation of this method. By these, all above working all devices are running either bundling software or updating required software with fixed /expandable hardware devices.

So from these calculation taken and to develop in the coming years the latest hardware have inbuilt firmware software at the time of 2000 which are main required operating devices for the using every one hardware with less volume of usage by firmware software and later the user orientation of the requirement of extra updated in the hardware and also a system of auto jumping software switching can be designed and providing extra slots.

USB-C

Technically is known as USB Type-C which is a 24pin USB connector system, distinguished by its rotationally-symmetrical connector. The USB Type-C Specification 1.0 was published by the USB Implementers Forum (USB-IF) and was finalized in August 2014. It was developed at roughly the same time as the USB 3.1 Specification. A device that implements USB-C does not necessarily implement USB 3.1, USB power delivery, or alternate mode. The USB-C connectors connect to both hosts and devices, replacing various USB-B and USB-A connectors and cables with a standard meant to be future proof. The 24-pin double-sided connector is slightly larger than the micro-B connector, with a USB-C port measuring 8.4 millimeters (0.33 in) by 2.6 millimeters (0.10 in). The connector provides four power/ ground pair two differential pair for non-super speed data (though only one pair is populated with USB C cable) four pair for super speed data (only pairs are used in USB 3.1 mode)

two "sideband use" pins, V_{CONN} +5 V power for active cables, and a configuration pin used for cable orientation detection and dedicated biphase mark code (BMC) configuration data channel. Connecting an older device to a host with a USB-C receptacle requires a cable or adapter with a USB-C receptacle plug or receptacle on one end and a USB-C plug on the other end. Legacy adapters with a USB-C receptacle are "not defined or allowed" by the specification because they can create "many invalid and potentially unsafe" cable combinations.

Devices may be hosts (DFP: Downstream-facing port) or peripherals (UFP: Upstream-facing port). Some, such as mobile phones, can take either role depending on what kind is detected on the other end. These types of ports are called Dual-Role-Data (DRD) or Dual- Role Port (DRP), which was known as USB On-The-Go in the previous specification when two such devices are connected the roles are randomly assigned but a swap can be commanded from either end, although there are optional path and role detection methods that would allow devices to select a preference for a specific role. Furthermore, dual-role devices that implement USB power delivery may independently and dynamically swap data and power roles using the Data Role Swap or Power Role Swap processes. USB-C devices may optionally provide or consume bus power currents of 1.5 A and 3.0 A (at 5 V) in addition to baseline bus power provision power sources can either advertise increased USB current through the configuration channel, or they can implement the full USB power delivery specification using both BMC-coded configuration line and legacy BFSK-coded VBUS line.

Figure1. USB C

All USB-C cables must be able to carry a minimum of 3 A current (up to 60 W @20V) but can also carry high-power 5 A current (up to 100 W). All USB-C to USB-C cables must contain e-marker chips programmed to identify the cable and its current capabilities. USB charging ports should also be clearly marked with capable power wattage.

Audio Adapter Accessory Mode

USB-C plug supports analog headsets through an audio adapter accessory with a 3.5 mm socket providing four standard analog audio signals (Left, Right, Mic, and GND). The audio adapter may optionally include a USB-C pass-through plug to allow 500 mA devices charging. The engineering specification states that a 3.5 mm analog headset jack should not replace a USB-C plug. Analog signals use the USB 2.0 positive differential pair (Dp) and the two side-band use pairs. The presence of the audio accessory is signaled through the configuration channel and V_{CONN}.

Alternate Mode

An Alternate mode dedicates some of the physical wires in a USB-C 3.1 cable for direct device-to-host transmission of alternate data protocols. The four high-speed lanes, two side-band pins, and (for a dock, detachable device and permanent cable applications only) two non-Super Speed data pins and one configuration pin can be used for alternate mode transmission. The modes are configured using vendor-defined messages (VDM) through the configuration channel.

Pin	Name	Description	Pin	Name	Description
A1	GND	Ground return	B12	GND	Ground return
A2	SSTXp1	SuperSpeed differential pair #1,	B11	SSRXp1	SuperSpeed differential pair #2,
A3	SSTXn1	SuperSpeed differential pair #1, TX, negative	B10	SSRXn1	SuperSpeed differential pair #2, RX, negative
A4	VBUS	Bus power	B9	^v BUS	Bus power
A5	CC1	Configuration channel	B8	SBU2	Sideband use (SBU)
A6	Dp1	Non-SuperSpeed differential pair, position 1, positive	B7	Dn2	Non-SuperSpeed differential pair, position 2, negative ^[a]
A7	Dn1	Non-SuperSpeed differential pair, position 1, negative	B6	Dp2	Non-SuperSpeed differential pair, position 2, positive ^[a]
A8	SBU1	Sideband use (SBU)	B5	CC2	Configuration channel
A9	VBUS	Bus power	B4	^v BUS	Bus power
A10	SSRXn2	SuperSpeed differential pair #4, RX, negative	ВЗ	SSTXn2	SuperSpeed differential pair #3, TX, negative
A11	SSRXp2	SuperSpeed differential pair #4, RX, positive	B2	SSTXp2	SuperSpeed differential pair #3, TX, positive
A12	GND	Ground return	B1	GND	Ground return

Figure 2. USB-C receptacle pin out end-on view

USB 2.0 Billboard Device Class specification

USB 2.0 Billboard device class is defined to communicate the details of supported alternate modes to the computer host OS. It provides user-readable strings with product description and user support information. Billboard messages can be used to identify incompatible connections made by users. They are not required to negotiate alternate modes and only appear when negotiation fails between the host (source) and device (sink).

USB Audio Device Class 3.0 specification

USB audio device class 3.0 defines powered digital audio headsets with a USB-C plug. The standard support for the transfer of both digital and analog audio signals over the USB port.

Software support

- Linux has supported USB 3.0 since kernel version 2.6.31 and USB version 3.1 since kernel version 4.6.
- Windows 10 and Windows 10 mobile support USB 3.1, USB-C, alternate modes, billboard device class, power delivery, audio accessory, and USB dual-role support.
- Windows 8.1 added USB-C and billboard support in an update.
- OS X Yosemite supports USB 3.1, USB-C, alternate modes, and power delivery.
- Android Marshmallow works with USB 3.1 and USB-C.
- Chrome OS supports USB 3.1 and USB-C starting with the Chrome book pixel 2015 and supports alternate modes, power delivery, and USB dual-role support.

Hardware support

An increasing number of motherboards, notebooks, tablet computers, smartphones, hard disk drives, USB hubs and other devices released from 2014 onwards feature USB-C receptacles. Currently, display port is the most widely implemented alternate mode and is used to provide video output on devices such as the Mac Book, Chrome book pixel, HTC U11, Samsung Galaxy S8, Samsung Galaxy Tab Pro S, Microsoft Lumia 950, and Nintendo switch. A USB-C multiport adapter converts the device's native video stream to display port/HDMI/VGA, allowing it to be displayed on an external display, such as a television set or computer monitor.

Examples of devices that support high-power charging according to the USB power delivery specification include the Mac Book, Chrome book Pixel, Dell Venue 10 Pro, Lenovo ThinkPad X1, Nintendo Switch, Nexus 5X, Nexus 6P, Google Pixel, Samsung Galaxy Tab Pro S, Samsung Galaxy S8, Samsung Galaxy Note 8, LG G6, and Moto Z.

Audio output compatibility

As described above, it is possible to use the Audio Adapter Accessory mode to provide an analog audio signal connection over USB-C plug however it is not mandatory to support the mode. The USB-C port on some devices might only support the digital audio output mode, which makes it necessary to use a digital-to-analog converter in order to send audio output toward earphone or speakers that can only accept an analog input.

Compatibility with other fast charging technology

In 2016, Benson Leung, an engineer at Google, pointed out that quick charge 2.0 and 3.0 technologies developed by Qualcomm are not compatible with the USB-C standard. Qualcomm responded that it is possible to make fast charge solutions fit the voltage demands of USB-C and that there are no reports of problems. However, it did not address the standard compliance issue at that time. Later in the year, Qualcomm released quick charge 4 technology, which cited – as advancement over previous generations – "USB Type-C and USB PD compliant".

During in cooperating the old operating system to the latest firmware system for increase in speed and to reduce power consumption by this the system has the defaults that the latest firmware system doesn't support the operating system for additional application to avoid this the system must be connected to the dock C i.e., USB type C is desired above which is used to connect the required system with required patch up file to this initially USB type C driver must be in build within the firmware so when required dock C can be used to connect other devices

A. Hypothesis

- By low volume of firmware software supporting hardware as well as operating system increasing working speed very effectively.
- By this method only required latest updates only updates

- User orientation devices only manufactured
- Less price high performance of required device
- Not required for the internet or download feature.
- The expandable software by bundling hardware and software
- Reducing power usage

B. Limitation of the study

- The study has taken only the extra feature requirement of the different user orientation
- The research takes except form the part of high price rate of and high-value operating system.

V. CONCLUSION

This research methodology results in the implementation of latest hardware technology with earlier software, firmware installation of operating system, with a special features of latest supporting updating software. While using the latest software and hardware device the end user can be operated with earlier OS and the latest hardware by the way of hardware jumper settings, before booting the device or by changing of the operating manual setting i.e., after the booting the device. Now a days the production, manufacture of systems can be produced with the unique model, each and every requirement of system which are operatable without their interest. The student, businessman, marketing organizations, multimedia users and like different type of people's requirement with different type of hardware and software device like of OTG operators in mobile device USB type C in systems so that this method of user orientation devices getting with less cost and with high performance and no need of unnecessary download of latest software ultimately this reduce in power consumption

VI. REFERENCES

- [1]. Aaby, Anthony (2004). Introduction to Programming Languages.
- [2]. Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. (1988). Compilers: Principles, Techniques, and Tools. Addison-Wesley.
- [3]. Baron, Michael. (2006) Probability and Statistics for Computer Scientists.
- [4]. Brad Lockwood (13 October 2008). Bill Gates: Profile of a Digital Entrepreneur: EasyreadSuperLarge18ptEdition(https://books.go ogle.com/books?id=7J_EBQuPxAgC&pg=PA25). ReadHowYouWant.com. pp. 25-. ISBN 978-1-4270-9149-9.
- [5]. Booch, Grady (1997). Object-Oriented Analysis and Design with Applications. Addison-Wesley.
- [6]. Caruso, Denise (1984-04-02) "Company Strategies Boomerang" (https://books.google.com/books?id=kC4EAAAA MBAJ&lpg=PA80&pg=PA80#v=onepage&q&f=f alse). InfoWorld. pp. 80-83. Retrieved 10 February 2015.
- [7]. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. & Stein, Clifford. (2001) Introduction to Algorithms, MIT Press and McGraw-Hill.
- [8]. Ferguson, R. Stuart. (2013) Practical Algorithms for 3D Computer Graphics.
- [9]. G. David Garson (January 2006). Public Information Technology and Egovernance:ManagingtheVirtualState (https://books.google.com/books?id=OwYnTHQ C4e0C&pg=PA229). Jones & Bartlett Learning. pp. 229-. ISBN 978-0-7637-3468-8.
- [10]. Hally, Mike (2005). Electronic brains/Stories from the dawn of the computer age. London: British Broadcasting Corporation and Granta Books. p. 79. ISBN 1-86207-663-4.
- [11]. Hopcroft, John E. and Jeffrey D. Ullman, (1979) Introduction to Automata Theory, Languages, and Computation.

- [12]. Justice WHITE, with whom Justice BLACKMUN joins, dissenting. (https://supreme.justia.com/cases/federal/us/473/ 90 8/).
- [13]. Knuth, Donald. (1998) The Art of Computer Programming: Volume 3: Sorting and Searching.
- [14]. Kurose, James; Ross, Kieth (2005). Computer Networking: A Top-Down Approach. Pearson.
- [15]. Mitchell, Tom. (1997) Machine Learning.
- [16]. Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. Prentice Hall.
- [17]. Peter Brass. (2008) Advanced Data Structures, Cambridge University Press.
- [18]. Press, William H., Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. (2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing.
- [19]. Russell, Stuart J. and Peter Norvig (2009) Artificial Intelligence: A Modern Approach (3rd Edition).
- [20]. Shirley, Peter. (2009) Fundamentals of Computer Graphics-3rd edition.
- [21]. Stallings (2005). Operating Systems, Internals and Design Principles. Pearson.
- [22]. Tying Arrangements and the Computer Industry: Digidyne Corp. vs. Data General. JSTOR 1372482 (https://www.jst or.org/stable/1372482).
- [23]. Wayne Carlson (2003) A Critical History of Computer Graphics and Animation.
- [24]. Wexelblat, Richard L. History of Programming Languages.
- [25]. (https://www.cnet.com/i/ne/p/2008/Psystar_anti trust_dismissal.pdf).